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Abstract The recently developed edge-based smoothed
finite element method (ES-FEM) is extended to the mix-
mode interface cracks between two dissimilar isotropic mate-
rials. The present ES-FEM method uses triangular elements
that can be generated automatically for problems even with
complicated geometry, and strains are smoothed over the
smoothing domains associated with the edges of elements.
Considering the stress singularity in the vicinity of the bi-
material interface crack tip is of the inverse square root type
together with oscillatory nature, a five-node singular crack
tip element is devised within the framework of ES-FEM to
construct singular shape functions. Such a singular element
can be easily implemented since the derivatives of the singu-
lar shape term (1/

√
r) are not needed. The mix-mode stress

intensity factors can also be easily evaluated by an appro-
priate treatment during the domain form of the interaction
integral. The effectiveness of the present singular ES-FEM
is demonstrated via benchmark examples for a wide range of
material combinations and boundary conditions.
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1 Introduction

Layered structures are functionally important and can be
found in many applications [1], e.g., composite laminates,
adhesively bonded joints and thin film/substrate systems.
For a layered structure, delamination or interface fracture
between two adjacent layers is a typical failure mechanism
[2]. Therefore, the development of a robust simulation tool to
predict the energy release rate and the stress intensity factors
(SIFs) of interface crack in the bimaterial system can lead
to a better understanding of the influence of the mismatch in
properties and their effects on interface crack growth.

The theoretical foundations for bimaterial interface cracks
were studied earlier by Williams [3] and England [4], and fur-
ther extended by Rice and Sih [5]. For cracks in isotropic and
elastic materials, it is well known that the stresses and strains
near the crack tip are singular: σi j ∼ 1/

√
r , εi j ∼ 1/

√
r ,

(where r is the radial distance from the crack tip). How-
ever, In the case of a crack lying along a bimaterial interface,
the stresses are oscillatory in addition to singularity. Rice
[6] introduced a complex K for bimaterial interfacial cracks
to simulate this feature, in which K will be reduced to the
classical definition (K I , KII) in the absence of mismatch in
material properties. The stress singularity in the vicinity of
the crack tip of a bimaterial interface crack can be expressed
as r−1/2+iε [3–6]. However, the oscillatory term r iε is in
general confined to a small distance close to the crack tip.

The numerical simulation of interface cracks can be car-
ried out with several different approaches. When FEM is
used, the eight-node quarter-point element or the six-node
quarter-point element (collapsed quadrilateral) is often
adopted to model the inverse

√
r stress singularity in the

vicinity of the crack tip [7–9]. Considering the oscillatory
singularity of interface crack tip, the stress intensity factors
are extracted by an appropriate treatment during the domain
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form of the contour interaction integral [10–12]. Recently,
Belytschko and Moes developed so-called extended finite
element method (XFEM) to model arbitrary discontinuities
in meshes [13,14]. This extension exploits the partition of
unity property of finite elements, which allows local enrich-
ment functions to be easily incorporated into a finite element
approximation while preserving the classical displacement
variational setting [15]. Sukumar et al. [16] extended recently
the XFEM to bimaterial interface cracks with a modification
of enrichment functions. However, the enrichment is only
partial in the blending elements at the edge of the enriched
sub-domain, and consequently some pathological terms app-
ear in the interpolation, which can destroy the partition of
unity property locally.

More recently, Liu et al. [17] have applied the strain
smoothing technique to the FEM settings to develop a smoo-
thed finite element method (SFEM) [18,19]. In the SFEM,
cell-based strain smoothing technique is incorporated to the
standard FEM formulation, so as to reduce the over stiff-
ness of the FEM model. To further reduce the stiffness, a
node-based smoothed finite element (NS-FEM) [20] has been
formulated using the smoothing domains associated with
nodes. The NS-FEM works for triangular, 4-node quadri-
lateral and even n-sided polygonal elements. When triangu-
lar elements are used, the NS-FEM gives the same results
as the node-based uniform strain elements [21] or as the
LC-PIM (known also as NS-PIM) [22] when the linear shape
functions are used for interpolation. The NS-FEM, however,
behaves “overly-soft” observed as non-zero energy spurious
modes that can lead to temporal instability when it is used
to solve the dynamic problems. To reduce this overly-soft
behavior, an edge-based smoothed finite element (ES-FEM)
was thus invented for both 2D [23] and 3D problems [24].
The ES-FEM uses the triangular mesh that can be generated
automatically for problems with complicated geometry, and
the strain smoothing domains are associated with the edges
of elements. The ES-FEM can properly reduce the softening
effects and gives a close-to-exact stiffness, and thus often
exhibits super convergence properties, ultra accuracy and
high computational efficiency compared to the traditional
FEM using the same meshes. Most importantly, the imple-
mentation procedure in ES-FEM offers a very convenient
way to create the displacement field using the simple point
interpolation method (PIM) [25–27]. This is because we need
only the shape functions values (not the derivatives) on the
edges of the smoothing domains in the ES-FEM formulation
in computing the stiffness matrix. Therefore, we can create
the

√
r displacement field using special basis shape functions

for interpolation and thus obtain a proper singular stress field
in the vicinity of the crack tip.

In this paper, the edge-based smoothed finite element
method (ES-FEM) is modified to solve the mix-mode inter-
face cracks between two dissimilar isotropic materials.

A five-node singular element is designed within the frame-
work of ES-FEM to construct singular shape functions for
the edge-based smoothing domains connected to the crack
tip. To model the oscillatory effect r iε at the crack tip, the
mix-mode stress intensity factors are numerically extracted
by the domain form of the interaction integral with appropri-
ate treatments. Intensive benchmark examples show that the
present singular ES-FEM improves the accuracy of SIFs and
energy release rate in comparison with the standard FEM, the
singular FEM and ES-FEM. Excellent agreement between
the numerical results and reference solutions with less than 1
percent relative error is achieved for a wide range of material
combinations and boundary conditions.

The paper is organized as follows. In Sect. 2, the main
ingredients of linear elastic interfacial fracture mechanics
are summarized. Section 3 provides a brief description of
ES-FEM formulation for bimaterial interface. The construc-
tion of the singular shape functions near the interface crack tip
is elaborated in Sect. 4. Section 5 discusses the domain inter-
action integrals for interface crack. In Sect. 6, some numeri-
cal examples including different material combinations and
boundary conditions are studied to demonstrate the effec-
tiveness of the present method. Some concluding remarks
are closed in Sect. 7.

2 Interface fracture mechanics

Figure 1 gives the schematic of a bimaterial interface crack.
The crack is located along the interface that is between two
semi-infinite planes. Let the plane above the crack be denoted
by material 1 with Young’s modulus and Poisson’s ratio of
E1 and v1, respectively, and let the plane below the crack
be material 2 with corresponding properties of E2 and v2.
In linear elastic interfacial fracture mechanics [6,28], the
complex stress intensity factor K = K I + i KII is adopted.
The in-plane traction vector at a distance rahead of the crack
takes the form [28]:

(σyy + iτxy)θ=0 = Kr iε

√
2πr

(1)

where i = √−1, and ε is the bimaterial constant which is a
function of β, the second Dundurs parameter [29]:

β = µ1(k2 − 1)− µ2(k1 − 1)

µ1(k2 + 1)+ µ2(k1 + 1)
(2)

ε = 1

2π
log

(
1 − β

1 + β

)
(3)

ki =
⎧⎨
⎩

3 − vi

1 + vi
(plane stress)

3 − 4vi (plane strain)
(i = 1, 2) (4)

whereµi , vi and ki are the shear modulus, Poisson’s ratio and
the Kolosov constant, respectively, of material i (i = 1, 2).

123



Comput Mech (2010) 45:109–125 111

1 1,E v

2 2,E v

Material 1

Material 2

r
θ

x

y

yyσ ∞

xyτ ∞

yyσ ∞

xyτ ∞

crack

Fig. 1 Bimaterial interface crack

From the above equations, we note that the dimension of
K is [stress][length]1/2−iε, whereas its amplitude |K| is the
[stress][length]1/2. The energy release rate can be related to
the stress intensity factor amplitude through the following
relation [28].

J = G = 1

E∗
|K|2

cosh2(πε)
, |K|2 = KK̄ = K 2

I + K 2
II (5)

where

2

E∗ = 1

Ē1
+ 1

Ē2
, Ēi =

{
Ei (plane stress)

Ei
1−v2

i
(plane strain) (6)

The phase angle ψ is a measure of the relative propor-
tion of shear to normal tractions at a characteristic distance l
ahead of the crack tip. It is defined through the relation [6].

Kliε = |K| eiψ (7)

or

ψ = tan−1
(

Im[Kliε]
Re[Kliε]

)
(8)

The phase angle ψ is an important parameter in the
characterization of interfacial fracture toughness, and the

characteristic length l associated with a factor of 10 change
affects little the phase angle for the small ε [6]. Therefore, in
reporting the phase angle for a given loading configuration,
the characteristic length l can be taken as the crack (liga-
ment) length or a specimen dimension. It is apparent from
the above discussion that, unlike the treatment of cracks in
isotropic materials, tension and shear effects are inseparable
in the vicinity of interface crack tip.

The Cartesian components of the near-tip asymptotic dis-
placement fields can be obtained from Reference [6]. The
crack-tip displacement fields in the upper-half plane (replace
επ by −επ for the lower-half plane) are [28]:

u j = 1

2µ1

√
r

2π

{
Re[Kliε]ũ I

j (θ, ε, v1)

+ Im[Kliε]ũ I I
j (θ, ε, v1)

}
( j = x or y) (9)

ũ I
x = A

[
−e2ε(π−θ)

(
cos

θ

2
+ 2ε sin

θ

2

)
+ k1

(
cos

θ

2

− 2ε sin
θ

2

)
+ (1 + 4ε2) sin

θ

2
sin θ

]
(10)

ũII
x = A

[
e2ε(π−θ)

(
sin

θ

2
− 2ε cos

θ

2

)
+ k1

(
sin

θ

2

+ 2ε cos
θ

2

)
+ (1 + 4ε2) cos

θ

2
sin θ

]
(11)

ũ I
y = A

[
e2ε(π−θ)

(
sin

θ

2
− 2ε cos

θ

2

)
+ k1

(
sin

θ

2

+ 2ε cos
θ

2

)
− (1 + 4ε2) cos

θ

2
sin θ

]
(12)

ũII
y = A

[
e2ε(π−θ)

(
cos

θ

2
+ 2ε sin

θ

2

)
− k1

(
cos

θ

2

− 2ε sin
θ

2

)
+ (1 + 4ε2) sin

θ

2
sin θ

]
(13)

where

A = e−ε(π−θ)

(1 + 4ε2) cosh(πε)
(14)

and (r, θ) are polar co-ordinates with origin at the right crack
tip.

In Eq. (9), Re[·] and Im[·] denote the real and imaginary
parts of a complex number, respectively, and r iε = eiε log r =
cos(ε log r)+ i sin(ε log r).

3 ES-FEM for bimaterial interface

3.1 Governing equations

Consider a 2D static elastic problem governed by the equi-
librium equation in the domain � = �+ +�− separated by
a single interface, 	i , as shown in Fig. 2:
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+Ω

−Ω iΓ

u t
− − −Γ = Γ +Γ

uΓ

u t
− − −Γ = Γ +Γ

tΓ

Fig. 2 Inhomogeneous body with interface subjected loads

∇ · σ + b = 0 in� (15)

where ∇ is the divergence operator, σ is the Cauchy stress
tensor and b is the body force term.

The essential and natural boundary conditions are given
by:

u = u	 on	u (16)

σn = t	 on	t (17)

where u	 and t	 are the vectors of the prescribed displace-
ments and tractions respectively, and n is the outward normal
unit vector defined on the boundary 	.

On the interface, 	i , continuity of tractions and displace-
ments requires

[[ti ]] = t+i − t−i = 0 (18)

[[ui ]] = u+
i − u−

i = 0 (19)

where [[.]] denotes a jump.
The constitution equation (stress–strain relation) is given

by:

σ = Dε (20)

where D is the matrix of material constants, and σ T =
{σxx σyy τxy } and εT = { εxx εyy γxy } are the vector forms
of the stress and strain tensor respectively.

3.2 Edge-based strain smoothing

The domain� is first discretized into Ne of non-overlapping
and non-gap elements and Nn nodes. Then, the approxima-
tion of displacement field for a 2D static elasticity problem
is given by:

u(x) =
∑
i∈ne

n

Ni (x)di (21)

interface

Filed node

Centroid

Smoothing domain with material 1

Smoothing domain with material 2

inner edge kboundary edge m

interface
 edge n

Fig. 3 Construction of edge-based strain smoothing domains

where u = { ux uy }T is the vector of the displacement,
respectively, in x-axis and y-axis, ne

n is the set of nodes of
the element containing x = { x y }T ,di = { dxi dyi }T is the
vector of nodal displacements, and Ni is a matrix of shape
functions

Ni (x) =
[

Ni (x) 0
0 Ni (x)

]
(22)

in which Ni (x) is the shape function for node i .
The compatibility equation (strain-displacement relation)

is given by:

ε = ∇s u (23)

where ∇su is the symmetric gradient of the displacement
field.

In the ES-FEM, however, we do not use the compatible
strains ε = ∇s u but the strains “smoothed” over the local
smoothing domains. These local smoothing domains are con-
structed with respect to the edges of triangular elements such
that � = ∪Ns

k=1�
s
k and �s

i ∩ �s
j = 0, ∀i 	= j , in which Ns

is the number of smoothing domains. The rule is that the
problem domain is first divided into two sub-domains based
on the assignment of materials as shown in Fig. 3. Then, for
each sub-domain with the isotropic material, the smoothing
domain corresponding to the inner edge k, �s

k , is formed by
connecting two end points of edge k and two centroids of
the adjacent triangular elements. The smoothing domain for
the boundary edge m or the interface edge n, �s

mor �s
n , is

just one third region of triangular element which contains the
edge m or the edge n.

Using the edge-based smoothing domains, smoothed
strains can be obtained using the compatible strains ε = ∇s u
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through the following smoothing operation over domain �s
k

associated with the edge k:

ε̄k = 1

As
k

∫
�s

k

∇su(x)d� = 1

As
k

∫
	s

k

Lnu(x)d	 (24)

where As
k = ∫

�s
k

d� is the area of the smoothing domain�s
k ,

	s
k is the boundary of the smoothing domain and Ln is the

outward unit normal matrix which can be expressed as:

Ln =
⎡
⎣nx 0

0 ny

ny nx

⎤
⎦ (25)

Substituting Eq. (21) into Eq. (24), the smoothed strain can be
written in the following matrix form of nodal displacements.

ε̄k =
∑
i∈ns

k

B̄i (xk)d̄i (26)

where ns
k is the set of nodes associated the smoothing domain

�s
k ; and B̄i (xk) is termed as the smoothed strain gradient

matrix that is calculated by:

B̄i (xk) =
⎡
⎣ b̄i x (xk) 0

0 b̄iy(xk)

b̄iy(xk) b̄i x (xk)

⎤
⎦ (27)

where b̄ih(xk), h = x, y, is computed by:

b̄ih(xk) = 1

As
k

∫
	s

k

nh(x)Ni (x)d	 (28)

Using the Gauss integration along the segments of
boundary 	s

k , we have:

b̄ih = 1

As
k

Nseg∑
m=1

⎡
⎣Ngau∑

n=1

wm,n Ni
(
xm,n

)
nh

(
xm,n

)⎤⎦ (h = x, y)

(29)

where Nseg is the number of segments of the boundary 	s
k ,

Ngau is the number of Gauss points used in each segment,
wm,n is the corresponding weight of Gauss points, nh is the
outward unit normal corresponding to each segment on the
smoothing domain boundary and xm,n is the nth Gaussian
point on the mth segment of the boundary 	s

k .

3.3 Discretized system equation

The discrete equations of ES-FEM are generated from the
smoothed Galerkin weak form:∫
�

δ (ε̄(u))T D (ε̄(u)) d�−
∫
�

δuT bd�−
∫
	t

δuT t	d	=0

(30)

Substituting the approximated displacements in Eq. (21)
and the smoothed strains from Eq. (24) into the smoothed
Galerkin weak form, and invoking the arbitrary nature of
the variation operations, a set of discretized algebraic system
equations can be obtained in the following matrix form:

K̄d̄ = f (31)

where d̄ is the displacement vector of all the nodes, K̄ is the
global stiffness matrix and f is the nodal force vector that can
be obtained by:

f =
∫
�

N T (x)bd�+
∫
	t

N T (x)t	d	 (32)

The entries in sub-matrices of the stiffness matrix K̄ in
Eq. (31) can then be expressed as:

K̄i j =
Ns∑

k=1

K̄s
i j,k (33)

where the summation means an assembly process, and K̄s
i j,k

is the stiffness matrix associated with the smoothing domain
�s

k and can be computed by:

K̄s
i j,k =

∫
�s

k

B̄T
i DB̄ j d� =

Ns∑
k=1

B̄T
i DB̄ j As

k (34)

4 Construction of singularity of interface crack tip

A fundamental issue when modeling linear interface fracture
mechanics problems is to simulate the singularity of stress
field near the interface crack tip. However, since the stress
singularity at the crack tip of a bimaterial interface crack is
of the inverse square root type, the polynomial basis shape
functions can not represent the stress and strain field near the
crack tip. In the other hand, only the shape functions values
(not the derivatives) on the edges of the smoothing domains
in the ES-FEM formulation are needed to compute the stiff-
ness matrix. Therefore, we can create the

√
r displacement

field using special basis shape functions for interpolation and
thus obtain a 1/

√
r singular stress field in the vicinity of the

crack tip.
In this work, a five-node singular element containing the

crack tip is specially designed within the framework of
ES-FEM to construct special basis (singular) shape func-
tions. As shown in Fig. 4, one node is added to each edge of
the triangular elements connected to the crack tip. The loca-
tion of the added node is at the one quarter length of the edge
from the crack tip. Based on this setting, a field function u(x)
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l

1 2 3l/4

r

Fig. 4 Node arrangement near the crack tip. Dashed lines construct
the edge-based smoothing domains directly connected to the crack tip
node

at any point of interest on an edge of a singular element can
be constructed by the three nodes along the edge:

u(x) =
3∑

i=1

pi (x)ai = a0 + a1r + a2
√

r (35)

where r is the radial coordinate originated at the crack-tip,
and ai is the interpolation coefficient for pi (x) correspond-
ing to the given point x. The coefficients ai in Eq. (35) can
be determined by enforcing Eq. (35) to exactly pass through
nodal values of the three nodes along the edge:

u1 = a0 + a1r1 + a2
√

r1 (36)

u2 = a0 + a1r2 + a2
√

r2 (37)

u3 = a0 + a1r3 + a2
√

r3 (38)

Solving this simultaneous system of three equations for
ai , and substituting them back to Eq. (35), we shall obtain:

u(x)=
⎡
⎢⎣ 1+2

r

l
−3

√
r

l︸ ︷︷ ︸
φ1

−4
r

l
+
√

r

l︸ ︷︷ ︸
φ2

2
r

l
−
√

r

l︸ ︷︷ ︸
φ3

⎤
⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

u1

u2

u3

⎫⎪⎪⎬
⎪⎪⎭

(39)

Crack tip smoothing domain

Normal smoothing domain 

ο

γ

A

1

2 3

4 5

yG

xG

6

7

B

Fig. 5 The schematic of five-node element

where l is the length of the element edge, and φi (i = 1, 2, 3)
are the shape functions for these three nodes on the edge that
can be written:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ1 = 1 + 2 r
l − 3

√
r
l

φ2 = −4 r
l +

√
r
l

φ3 = 2 r
l −

√
r
l

(40)

Figure 5 shows a five-node element connected to the node
of crack tip. From the figure, we can see that each five-
node element is constructed by three edge-based smoothing
domains: two are the crack tip smoothing domains and one
is normal smoothing domain. To perform the point interpola-
tion within the crack tip smoothing domain, it is assumed that
the field function u varies in the same way as given in Eq. (35)
in the radial direction. In the tangential direction, however,
it is assumed to vary linearly. For points 6 and 7 which are
the midpoints of lines 2–3 and 4–5, the field functions can
be evaluated simply as follows.

u6 = 1

2
(u2 + u3) (41)

u7 = 1

2
(u4 + u5) (42)

Remind that in the formulation of ES-FEM, to compute
the smoothed strain gradient matrix B̄i (xk) by Eqs. (27) and
(29), only the shape function values at the Gauss points along
the boundary segments are needed. This is also performed
similarly to the present singular ES-FEM. However, in the
standard ES-FEM using only normal smoothing domains, the
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shape function used is always linear compatible along any
boundary segments, only one Gauss point is needed on each
boundary segment. In the present singular ES-FEM which
uses both the crack tip smoothing domain and the normal
smoothing domain, a proper number of Gauss points hence
need to be used on the boundary segments of the crack tip
smoothing domain, which depend on the order of the assumed
displacement field (or shape function) along these boundary
segments. The displacement in the vicinity of the crack tip
possesses the

√
r behavior near the crack tip, and thus more

Gauss points need to be used for the segments of the crack
tip smoothing domain to ensure the accuracy.

Specifically as shown in Fig. 5, for the crack tip smooth-
ing domain filled with the blue shadow surrounded by the set
of boundary segments of 1A-A2-2B-B1, there are two kinds
of segments: (1) one is nearly along the tangential direction
(A2 and 2B); (2) another is along the radial direction (1A and
B1).

We now construct specifically the shape function for Gauss
points on two kinds of boundary segments.

(i) For the Gauss point Gx on a segment nearly along the
tangential direction (for example A2, this point is also
on the line 1 − γ − o as shown in Fig. 5), the field
function is interpolated as:

u = u1φ1 + uγ φ2 + uoφ3 (43)

where

uγ =
(

1 − lγ−4

l4−5

)
u4 + lγ−4

l4−5
u5 (44)

uo =
(

1 − lo−2

l2−3

)
u2 + lo−2

l2−3
u3 (45)

in which li− j is the distance between points iand j .

Because the simple fact that
lγ−4
l4−5

= lo−4
l2−3

= η we
finally arrive at

u = φ1︸︷︷︸
N1

u1 + (1 − η)φ3︸ ︷︷ ︸
N2

u2 + ηφ3︸︷︷︸
N3

u3

+ (1 − η)φ2︸ ︷︷ ︸
N4

u4 + ηφ2︸︷︷︸
N5

u5 (46)

(ii) For the Gauss point G y on the segment of 1A along the
radial direction as shown in Fig. 5, the field function
is interpolated as:

u = u1φ1 + u5φ2 + u3φ3 = φ1u1 + 0 × u2 + φ3u3

+ 0 × u4 + φ2u5 (47)

By comparison of Eqs. (46) and (47), we can easily find
that Eq. (47) is just one case of Eq. (46) for η = 1. Thus, the
general form of shape functions for the interpolation at any
point within the five-node crack-tip element can be written
as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 = 1 + 2 r
l − 3

√
r
l

N2 = (1 − η)
(

2 r
l −

√
r
l

)
N3 = η

(
2 r

l −
√

r
l

)
N4 = (1 − η)

(
−4 r

l +
√

r
l

)
N5 = η

(
−4 r

l +
√

r
l

)
(48)

It is clear that the shape functions are (complete) linear
in r and “enriched” with

√
r that is capable to produce a

strain (hence stress) singularity field of an order of 1/2 near
the crack-tip. This is because the strain is evaluated from the
derivatives of the assumed displacements.

It is also noted that since the derivatives of the singular
shape term (1/

√
r) are not required to calculate the system

stiffness matrix, the formulation of the present five-node ele-
ment is much simply. Moreover, it does not need to use the
quadratic elements. Therefore, it can be very easily incorpo-
rated into the standard ES-FEM.

5 Domain interaction integral methods for bimaterial
interface cracks

In the linear elasticity, the general form of J -contour inte-
gral, which is identical to the energy release rate G, for a two
dimensional crack can be written as [30]:

J = G =
∫
	

(
1

2
σikεikδx j − σi j ui,x

)
n j d	, i = x or y;

j = x or y (49)

The J -integral remains globally path independent for
bimaterial interface crack problems when there exists no
material inhomogeneity in the direction parallel to the crack
[30]. In this case, the mixed-mode stress intensity factors K I

and KII can be readily evaluated using the domain form [31]
of the contour interaction integral [10].

In the interaction integral method [10,14], two states of a
cracked body are used to evaluate the stress intensity factors.
State 1, (σ (1)i j , ε

(1)
i j , u(1)i ), corresponds to the present state and

state 2, (σ (2)i j , ε
(2)
i j , u(2)i ), is an auxiliary state. Here, unlike the

cracks in homogeneous materials, it is chosen as the asymp-
totic fields with the oscillatory effect r iε at interface crack
tip. On summing the J -integral of two states, we can obtain
the contour interaction integral [14]:
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I =
∫
	

(σ
(1)
ik ε

(2)
ik δx j −σ (1)i j u(2)i,x −σ (2)i j u(1)i,x )n j d	, k = x or y

(50)

From Eq. (5), the interaction integral is related to the SIFs
through the relation [14].

I = 2

E∗
K (1)

I K (2)
I + K (1)

II K (2)
II

cosh2(πε)
(51)

Making the judicious choice of state 2 (auxiliary) as the pure
Mode I asymptotic fields, i.e., setting K (2)

I = 1, K (2)
I = 0

and evaluating I = II , we can compute K I and we proceed
in an analogous manner to evaluate KII:

K I = E∗ cosh2(πε)

2
II KII = E∗ cosh2(πε)

2
III (52)

To extract the mixed-mode stress intensity factors K I and
KII for bimaterial interface cracks, the auxiliary displacement
field in the local x − y crack-tip co-ordinate system (Fig. 1)
is more complex compared to the cracks in homogeneous
materials, and can be written as:

u j =
⎧⎨
⎩

1
4µ1 cosh(πε)

√
r

2π f j (r, θ, ε, k1)(upper-half plane)

1
4µ2 cosh(πε)

√
r

2π f j (r, θ, ε, k2)(lower-half plane)
j = x or y

(53)

where ε is the bimaterial constant that is defined in Eq. (3),
and µi , ki are the shear modulus and the Kolosov constant,
respectively, of material i (i = 1, 2).

To extract K I , the functions fx and fy are

fx = D + T1, fy = −C − T2 (54)

whereas to compute KII, the expressions for fx and fy are:

fx = −C + T2, fy = −D + T1 (55)

In the above equations δ, ϕ, C , D, T1 and T2 are defined
as:

C = β ′γ cos
θ

2
−βγ ′ sin

θ

2
, D =βγ cos

θ

2
+β ′γ ′ sin

θ

2
(56)

T1 = 2δ sin θ sin ϕ, T2 = 2δ sin θ cosϕ (57)

δ =
{

e−(π−θ)ε(upper-half plane)
e(π+θ)ε(lower-half plane)

ϕ = ε log r + θ

2
(58)

β = 0.5 cos(ε log r)+ ε sin(ε log r)

0.25 + ε2 ,

β ′ = 0.5 sin(ε log r)− ε cos(ε log r)

0.25 + ε2 (59)

γ = kδ − 1

δ
, γ ′ =kδ + 1

δ
, k =

{
k1 (upper-half plane)
k2 (lower-half plane)

(60)

The auxiliary strain components are the symmetric gradi-
ent of the auxiliary displacement components:

ε
(2)
i j = 1

2
(u(2)i, j + u(2)j,i ), i = x or y; j = x or y (61)

On defining

E =β ′γ ′ cos
θ

2
−βγ sin

θ

2
, F =βγ ′ cos

θ

2
+β ′γ sin

θ

2
(62)

we have

C,r = εD

r
, C,θ = − F

2
+ εE (63)

D,r = −εC
r
, D,θ = E

2
+ εF (64)

On setting

T3 = 2δ cos θ sin ϕ, T4 = 2δ cos θ cosϕ (65)

we have

T1,r = εT2

r
, T1,θ = εT1 + T2

2
+ T3 (66)

T2,r = εT1

r
, T2,θ = εT2 − T1

2
+ T4 (67)

If K I is to be extracted, then

fx,α= D,α + T1,α, fy,α = −C,α − T2,α (α=r, θ) (68)

whereas if KII is to be computed, then

fx,α=−C,α+T2,α, fy,α=−D,α − T1,α (α=r, θ) (69)

Since r,x = cos θ , r,y = sin θ , θ,x = − sin θ/r and θ,y =
cos θ/r , on using the chain rule, we can write the derivatives
of fx and fy in the x − y co-ordinate system as:

fx,x = fx,r r,x + fx,θ θ,x , fx,y = fx,r r,y + fx,θ θ,y (70)

fy,x = fy,r r,x + fy,θ θ,x , fy,y = fy,r r,y + fy,θ θ,y (71)

Letting

A =
{

1
4µ1 cosh(πε) (upper-half plane)

1
4µ2 cosh(πε) (lower-half plane)

B =
√

r

2π
(72)

we can now write the gradients of the auxiliary displacements
as:

u(2)x,x=A

(
B fx,x+r,x fx

4πB

)
, u(2)x,y = A

(
B fx,y+r,y fx

4πB

)
(73)

u(2)y,x=A

(
B fy,x + r,x fy

4πB

)
, u(2)y,y = A

(
B fy,y+r,y fy

4πB

)
(74)

and the auxiliary strains can now be evaluated from Eq. (61).
Using Hooke’s law, the auxiliary stresses are computed from
the auxiliary strains.

The contour integral in Eq. (50) is not the best form suited
for numerical calculations. We therefore recast the integral
into an equivalent domain form by multiplying the integrand
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Fig. 6 a Conventions at crack tip. Domain �d is enclosed by 	, C+,
C− and C0. Unit normal m j = −n j on 	 and m j = n j on C+, C−
and C0; b different types of elements at the crack tip for calculation of
the interaction integral; c each triangular element domain hosts three
sub-parts of smoothing domains associated with three edges, e.g. for
element domain �d

eff,m , three sub-parts �s
1, �

s
2 and �s

3 are involved

by a sufficiently smooth weighting function q which takes a
value of unity on an open set containing the crack tip and van-
ishes on an outer prescribed contour C0 as shown in Fig. 6a.
Assuming the crack faces are traction free, the interaction
integral may be written as:

I =
∫
C

(
σ
(1)
ik ε

(2)
ik δx j −σ (1)i j

∂u(2)i

∂x
−σ (2)i j

∂u(1)i

∂x

)
qm j d	 (75)

where the contour C = 	+ C+ + C− + C0 and m is the unit
outward normal to the contour C . Now using the divergence
theorem and passing to the limit as the contour 	 is shrunk
to the crack tip, we can gives the following equation for the
interaction integral in domain form:

I=−
∫

�d

(
σ
(1)
ik ε

(2)
ik δx j −σ (1)i j

∂u(2)i

∂x
−σ (2)i j

∂u(1)i

∂x

)
∂q

∂x j
d A (76)

where we have used the relations m j = −n j on 	 and m j =
n j on C+, C− and C0.

For the numerical evaluation of the above integral, as
shown in Fig. 6b, the domain �d is then set to be the col-
lection of all elements which have a node within a radius
of rd = rkhe and this elements set is denoted as N d . he is
the characteristic length of an element touched by the crack

tip and the quantity is calculated as the square root of the
element area.

The weighting function q that appears in the domain form
of the interaction integral is set: if a node ni that is contained
in the element e ∈ N d lies outside �d , then qi = 0; if node
ni lies in �d , then qi = 1. Since the gradient of q appears
in Eq. (76), the elements set N d

in with all the nodes inside
�d as shown in Fig. 6b contributes nothing to the interaction
integral, and non-zero contribution to the integral is obtained
only for elements set N d

ef f with an edge that intersects the

boundary ∂�d . Therefore, the Eq. (76) can be given by:

I=−
N d

eff∑
m=1

∫

�d
eff,m

(
σ
(1)
ik ε

(2)
ik δx j −σ (1)i j

∂u(2)i

∂x
−σ (2)i j

∂u(1)i

∂x

)
∂q

∂x j
d A

(77)

where �d
eff,m is domain of the mth element in the elements

set N d
eff.

It is noted that each triangular element domain hosts three
sub-parts of smoothing domains associated with three edges,
e.g. for element domain �d

eff,m , three sub-parts �s
1,�

s
2 and

�s
3 are involved as shown in Fig. 6c. The strains are smoothed

and thus constant in each parts belonging to three different
smoothing domains. Therefore, the integration in Eq. (77)
for one element (e.g. �d

eff,m) is conducted by the summation
of integration for three sub-parts (�s

1,�
s
2 and �s

3).

∫

�d
eff,m

W
∂q

∂x j
d A =

3∑
n=1

∫
�s

n

W
∂q

∂x j
d A (78)

where

W = σ
(1)
ik ε

(2)
ik δx j − σ

(1)
i j

∂u(2)i

∂x
− σ

(2)
i j

∂u(1)i

∂x
(79)

6 Numerical examples

6.1 Centre-crack in an infinite bimaterial plate

The problem of an interface crack between two dissimilar
elastic semi-infinite planes (Fig. 1) is first studied. The exact
solution to this problem under remote traction t = σ∞

yy +iτ∞
xy

was obtained by Rice and Sih [6]. The solution for K I and
KII at the right crack tip is [5,6]:

K= K I + i KII =(σ∞
yy +iτ∞

xy )(1 + 2iε)
√
πa(2a)−iε (80)

We first consider the case of pure tension remote loading.
In the computation, only half of the specimen is considered
with the appropriate displacement constraint due to symme-
try (Fig. 7). The right edge are constrained in x direction to
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0xu =

0Material 1

Material 2

xu =

Fig. 7 Centre-crack under remote tension (half model)

remove the edge singularity [6]. The factors K0 and G0 are
used to normalize the stress intensity factors and the energy
release rate, respectively.

K0 = σ∞
22

√
πa G0 = (σ∞

22 )
2a

E1
(81)

where 2a is the crack length. The material constants used in
the numerical computation are: E1 = 1 × 103, E2/E1 = 22,

v1 = 0.3 and v2 = 0.2571, and plane strain conditions are
assumed. The exact solutions from Eq. (80) are:

K I

K0
= 1.008

KII

K0
= 0.1097

G

G0
= 1.4358 (82)

The crack dimension is selected as a = 1. Since the exact
solution is for the infinite domain problem, the sample size
W/a = 30 is used in all models to avoid the effect of finite
size. Five structured meshes with a/h: (3.0, 4.0, 6.0, 8.0
and 10.0) and one unstructured mesh from ABAQUS are
adopted, where h is the mesh spacing. A sample structured
mesh (a/h = 8.0) and unstructured mesh in the vicinity
of crack tip are, respectively, shown in Fig. 8a and b. All
the studies are conducted using the domain radius parameter
rk = 4, unless stated to be otherwise. The strain energy is
defined as:

‖u‖E(�) =
⎛
⎝1

2

∫
�

εT Dεd�

⎞
⎠

1/2

(83)

6.1.1 Influence of the number of gauss points

Table 1 lists the results of the study of the influence of the
number of gauss points along one segment of smoothing
domains on the SIFs, energy release rate G and strain energy.
In this study, the mesh with a/h = 8.0 is used. It can be
seen that the strain energy and the SIFs keep nearly constant
when more than 5 gauss points are used. Thus, all the mod-
els discussed later use 5 gauss points along one segment of
the smoothing domain. Note that the less the gauss points
used, the higher the strain energy and the SIFs. This may be
explained that less gauss points bring the effect of the sim-
ilar reduce integration, and thus lead to over-estimation of
results.

Fig. 8 Meshes in the vicinity
of the crack (a = 1, W = 20),
a structured mesh with
a/h = 8.0, b unstructured mesh

(a) (b)
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Table 1 Centre-crack under
remote tension: the number of
Gauss points effects

Ngau ‖u‖E(�) K I /K0 (% error) KII/K0 (% error) G/G0 (% error)

1 0.01049016 1.0063 (0.1) 0.1100 (0.2) 1.4306 (0.3)

3 0.01048783 1.0060 (0.2) 0.1099 (0.1) 1.4297 (0.4)

5 0.01048779 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4)

7 0.01048778 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4)

Table 2 Centre-crack under remote tension: comparison of stress intensity factors and energy release rate using the standard FEM, the singular
FEM, ES-FEM and the singular ES-FEM

Exact solution Mesh (a/h) 3.0 (% error) 4.0 (% error) 6.0 (% error) 8.0 (% error) 10.0 (% error)

K I /K0 = 1.008 FEM 0.9740 (3.4) 0.9834 (2.4) 0.9903 (1.8) 0.9939 (1.4) 0.9959 (1.2)

Sin FEM* 1.0030 (0.5) 1.0046 (0.4) 1.0057 (0.3) 1.0059 (0.2) 1.0062 (0.2)

ES-FEM 0.9944 (1.3) 0.9989 (0.9) 1.0020 (0.6) 1.0033 (0.5) 1.0041 (0.4)

Sin ES-FEM 1.0039 (0.4) 1.0051 (0.3) 1.0060 (0.2) 1.0061 (0.2) 1.0063 (0.2)

KII/K0 = 0.1097 FEM 0.1244 (13.4) 0.1192 (8.6) 0.1141 (4.6) 0.1122 (2.3) 0.1111 (1.3)

Sin FEM* 0.1119 (2.0) 0.1106 (0.9) 0.1105 (0.9) 0.1101 (0.3) 0.1099 (0.2)

ES-FEM 0.1165 (6.2) 0.1134 (3.4) 0.1118 (1.0) 0.1108 (1.0) 0.1104 (0.6)

Sin ES-FEM 0.1114 (1.6) 0.1104 (0.7) 0.1103 (0.6) 0.1100 (0.3) 0.1099 (0.2)

G/G0 = 1.4358 FEM 1.3459 (6.3) 1.3699 (4.6) 1.3872 (3.4) 1.3964 (2.7) 1.4018 (2.4)

Sin FEM* 1.4219 (1.0) 1.4261 (0.7) 1.4292 (0.5) 1.4296 (0.4) 1.4304 (0.4)

ES-FEM 1.3993 (2.5) 1.4109 (1.7) 1.4188 (1.2) 1.4223 (0.9) 1.4244 (0.8)

Sin ES-FEM 1.4244 (0.8) 1.4273 (0.6) 1.4296 (0.4) 1.4301 (0.4) 1.4306 (0.3)

* The singular FEM uses the six-node triangular meshes. However, the comparison in every column is conducted under the meshes with the same
DOFs for the purpose of justice
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Fig. 9 Convergence of the K I for Centre-crack under remote tension

6.1.2 Accuracy of the SIFs and the energy release rate

In Table 2 and Figs. 9, 10 and 11, the comparison of the SIFs
and the energy release rate using different numerical meth-
ods (the standard FEM, the singular FEM, ES-FEM, and the
singular ES-FEM) is presented. Note that the six-node trian-
gular meshes are used by the singular FEM, and the DOFs
of these quadratic meshes are the same as those of the linear
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Singular FEM-T6
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Fig. 10 Convergence of the KII for Centre-crack under remote tension

meshes other methods use for the purpose of fair comparison.
It can be found that the singular ES-FEM improves signif-
icantly the accuracy of SIFs and G in comparison with the
standard FEM and ES-FEM, no matter the mesh size used.
In addition, compared to the singular FEM, the K I , KII and
G of singular ES-FEM are a little closer to the exact val-
ues. More importantly, the relative errors of K I , KII and G
using the singular ES-FEM are all within 1 percent for all
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Table 3 Centre-crack under
remote tension: domain
independence study

Mesh rk K I /K0 (% error) KII/K0 (% error) G/G0 (% error)

Structured a/he = 4.0 2 1.0123 (0.4) 0.1078 (1.7) 1.4467 (0.8)

3 1.0052 (0.3) 0.1109 (1.1) 1.4276 (0.6)

4 1.0048 (0.3) 0.1103 (0.6) 1.4262 (0.7)

Structured a/he = 8.0 2 1.0129 (0.5) 0.1065 (2.9) 1.4480 (0.9)

3 1.0059 (0.2) 0.1094 (0.3) 1.4291 (0.5)

4 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4)

5 1.0061 (0.2) 0.1100 (0.3) 1.4293 (0.4)

6 1.0061 (0.2) 0.1100 (0.3) 1.4295 (0.4)

Unstructured mesh 2 1.0036 (0.4) 0.1095 (0.2) 1.4229 (0.9)

3 1.0058 (0.2) 0.1099 (0.2) 1.4289 (0.5)

4 1.0060 (0.2) 0.1099 (0.2) 1.4293 (0.4)

5 1.0059 (0.2) 0.1098 (0.1) 1.4292 (0.4)

Table 4 Centre-crack under
remote tension: robust study Crack-tip K1/K0 (% error) KII/K0 (% error) G/G0 (% error)

perturbation �/a

0 1.0060 (0.2) 0.1098 (0.1) 1.4297 (0.4)

−0.001 1.0055 (0.3) 0.1098 (0.1) 1.4281 (0.5)

0.001 1.0066 (0.1) 0.1099 (0.2) 1.4314 (0.3)
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Fig. 11 Convergence of the J -integral for Centre-crack under remote
tension

the models used in this study, excepted the case of KII value
with the very coarse mesh (a/h = 3.0). All of these indicate
the singular ES-FEM can solve the interface crack problems
effectively.

6.1.3 Domain independence study

Table 3 gives the results of domain independence study using
both the structured mesh and unstructured mesh. We can eas-
ily observe domain independence of the SIFs for rk > 3 on
both structured and unstructured meshes.

6.1.4 Robustness study

To study the robustness of the singular ES-FEM, a simple test
is conducted. The crack-tip location is perturbed by �/a =
±0.001 and the results are compared to those when � = 0.
The mesh parameter is a/h = 8.0. The results are shown in
Table 4. From the results, we can notice clearly that the SIFs
and G from all the numerical calculations are in excellent
agreement with the corresponding exact solutions.

6.1.5 Material mismatch study

To study the performance of the singular ES-FEM on inter-
face cracks for different material property pairs, we varied the
ratio E1/E2 from 2 to 1,000 with the constant poison ratios:
v1 = 0.3 and v2 = 0.2571. It is observed that the results
are also accurate to within a few percent relative errors in
Table 5, which demonstrates again the effectiveness of the
singular ES-FEM for bimaterial interface cracks.

6.1.6 Shear loading condition

Next, we consider the bimaterial plate problem under remote
shear tractions. The geometry size, crack configuration and
boundary conditions are shown in Fig. 12. In the computa-
tion, full model is considered to demonstrate the computa-
tional strategy for problems containing more than two crack
tips. The same material parameters as before are used in this
case: E1 = 1×103, E2/E1 = 22, v1 = 0.3 and v2 = 0.2571,
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Table 5 Centre-crack under remote tension: material mismatch study

E1/E2 ε Singular ES-FEM Exact solution

K I /K0 (% error) KII/K0 (% error) G/G0 (% error) K I
K0

KII
K0

G
G0

2 0.0249 0.9995 (0.12) 0.0327 (0.64) 2.1497 (0.25) 1.0007 0.0325 2.1551

4 0.0516 1.0016 (0.14) 0.0678 (0.72) 1.7633 (0.29) 1.0030 0.0673 1.7684

8 0.0699 1.0039 (0.17) 0.0915 (0.36) 1.5620 (0.35) 1.0056 0.0912 1.5675

20 0.0833 1.0060 (0.19) 0.1088 (0.16) 1.4375 (0.41) 1.0079 0.1086 1.4434

40 0.0883 1.0072 (0.17) 0.1151 (0.03) 1.3959 (0.39) 1.0089 0.1151 1.4013

100 0.0914 1.0081 (0.14) 0.1192 (0.11) 1.3712 (0.33) 1.0096 0.1191 1.3758

1000 0.0933 1.0089 (0.11) 0.1217 (0.05) 1.3569 (0.26) 1.0100 0.1216 1.3604

Material 1

Material 2

W

2a

W

W

xyτ ∞

xyτ ∞

Fig. 12 Centre-crack under remote shear

and plane strain conditions are considered. The exact solu-
tion under pure shear loading (σ∞

yy = 0) is obtained from
Eq. (80).

K0 = τ∞
xy

√
πa G0 = (τ∞

xy )
2a

E1
(84)

K I

K0
= ±0.1097

KII

K0
= 1.008

G

G0
= 1.4358 (85)

where K I is positive at the left crack tip and negative at the
right crack tip. The specimen dimensions are set as: a = 1
and W/a = 30. Here too, five structured meshes with a/h:
(3.0, 4.0, 6.0, 8.0 and 10.0) are considered; All the studies,
except domain independence study, are conducted using the
domain radius parameter rk = 4.

The SIFs and the energy release rate obtained using differ-
ent numerical methods are compared in Table 6 and Figs. 13,
14 and 15. It can be seen again that the SIFs and the energy
release rate of the singular ES-FEM approach the exact solu-
tions much more than that of the standard FEM and ES-FEM,

Table 6 Centre-crack under remote shear: comparison of stress intensity factors and energy release rate using the standard FEM, the singular FEM,
ES-FEM and the singular ES-FEM

Exact solution Mesh (a/h) 3.0 (% error) 4.0 (% error) 6.0 (% error) 8.0 (% error) 10.0 (% error)

K I /K0 = −0.1097 FEM −0.1310 (19.4) −0.1284 (17.0) −0.1240 (13.0) −0.1214(10.6) −0.1196 (9.0)

Sin FEM* −0.1109 (1.1) −0.1108 (1.0) −0.1105 (0.7) −0.1104 (0.6) −0.1103 (0.5)

ES-FEM −0.1215 (10.7) −0.1185 (8.0) −0.1155 (5.3) −0.1141 (4.0) −0.1132 (3.2)

Sin ES-FEM −0.1106 (0.8) −0.1105 (0.7) −0.1104 (0.6) −0.1104 (0.6) −0.1103 (0.5)

KII/K0 = 1.008 FEM 0.9789 (2.9) 0.9823 (2.6) 0.9889 (1.9) 0.9931 (1.5) 0.9957 (1.2)

Sin FEM* 1.0029 (0.5) 1.0041 (0.4) 1.0057 (0.3) 1.0065 (0.2) 1.0069 (0.1)

ES-FEM 0.9937 (1.4) 0.9977 (1.0) 1.0015 (0.7) 1.0034 (0.5) 1.0045 (0.4)

Sin ES-FEM 1.0037 (0.4) 1.0050 (0.3) 1.0062 (0.2) 1.0068 (0.1) 1.0072 (0.1)

G/G0 = 1.4358 FEM 1.3611 (5.2) 1.3693 (4.6) 1.3861 (3.5) 1.3967 (2.7) 1.4034 (2.3)

Sin FEM* 1.4214 (1.0) 1.4247 (0.8) 1.4292 (0.5) 1.4314 (0.3) 1.4325 (0.2)

ES-FEM 1.3984 (2.6) 1.4086 (1.9) 1.4184 (1.2) 1.4233 (0.9) 1.4262 (0.7)

Sin ES-FEM 1.4231 (0.9) 1.4268 (0.6) 1.4301 (0.4) 1.4318 (0.3) 1.4328 (0.2)

* The singular FEM uses the six-node triangular meshes. However, the comparison in every column is conducted under the meshes with the same
DOFs
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Fig. 13 Convergence of the K I for centre-crack under remote shear
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Fig. 14 Convergence of the KII for centre-crack under remote shear

at the mesh with the same DOFs. Also, the K I , KII and G
of singular ES-FEM are a little closer to the exact values
than those of singular FEM. Moreover, the maximum rela-
tive error of all these values obtained by the singular ES-FEM
is only 1.1% even at the relative coarse mesh.

In Table 7, domain independency in the SIFs using the
singular ES-FEM is also studied for this shear loading. We
can observe domain independence of the SIFs at both the left
and right crack tip for rk > 3. Again, the singular ES-FEM
results are found to be in good agreement with the refer-
ence solutions. Results of the material mismatch study are
also conducted and given in Table 8. Excellent agreement
between the normalized K I , KII and G computed by the sin-
gular ES-FEM and the exact correspondence is realized for a
wide range of material combinations (E1/E2 = 2 ∼ 1000).

6.2 Film/substrate system by the four point bending test

The second example is a film/substrate system with the four
point bending test. Owing to symmetry, one half of the
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Fig. 15 Convergence of the J -integral for centre-crack under remote
shear

Table 7 Centre-crack under remote shear: domain independence study

Crack tip rk K I /K0 (% error) KII/K0 (% error) G/G0 (% error)

Left 2 0.1051 (4.26) 1.0085 (0.1) 4.2619 (0.1)

3 0.1098 (0.04) 1.0051 (0.3) 1.4267 (0.6)

4 0.1098 (0.08) 1.0054 (0.3) 1.4275 (0.6)

5 0.1098 (0.06) 1.0053 (0.3) 1.4274 (0.6)

Right 2 −0.1099 (0.1) 1.0122 (0.4) 1.4467 (0.8)

3 −0.1095 (0.2) 1.0073 (0.1) 1.4329 (0.2)

4 −0.1104 (0.6) 1.0068 (0.1) 1.4318 (0.3)

5 −0.1103 (0.5) 1.0067 (0.1) 1.4315 (0.3)

specimen is used in the computation. The specimen dimen-
sions, crack orientation, loading and the displacement bound-
ary conditions are given in Fig. 16. The thickness of film is h f

and that of the substrate is hs , with the total thickness denoted
by ht . E f and v f are used to denote Young’s modulus and
Poisson’s ratio of film. Es and vs are the corresponding prop-
erties for the substrate.

When the interface crack length significantly exceeds the
thickness of the film, steady state conditions are reached and
the energy release rate stabilizes to a constant value, Gss , the
steady state energy [32]:

Gss = 3(1 − v2
s )P

2 L2

2Esb2h3
t

{(
ht

hs

)3

− λ

[(
h f

ht

)3

+ λ

(
hs

ht

)3

+ 3λ
h f hs

h2
t

(
h f

ht
+ λ

hs

ht

)]}
(86)

where b is the depth of film/substrate system, P = 1 is the
point load applied at the right-top corner as shown in Fig. 16
and λ is defined as:

λ = Es(1 − v2
f )

E f (1 − v2
s )

(87)
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Table 8 Centre-crack under remote shear: material mismatch study∗

E1/E2 ε Singular ES-FEM Exact solution

K I /K0 (% error) KII/K0 (% error) G/G0 (% error) K I
K0

KII
K0

G
G0

2 0.0249 −0.0318 (2.2) 0.9989 (0.2) 2.1473 (0.4) −0.0325 1.0007 2.1551

4 0.0516 −0.0671 (0.3) 1.0013 (0.2) 1.7622 (0.4) −0.0673 1.0030 1.7684

8 0.0699 −0.0916 (0.5) 1.0040 (0.2) 1.5622 (0.3) −0.0912 1.0056 1.5675

20 0.0833 −0.1092 (0.6) 1.0066 (0.1) 1.4393 (0.3) −0.1086 1.0079 1.4434

40 0.0883 −0.1157 (0.6) 1.0078 (0.1) 1.3977 (0.2) −0.1151 1.0089 1.4013

100 0.0914 −0.1199 (0.6) 1.0085 (0.1) 1.3725 (0.2) −0.1191 1.0096 1.3758

1000 0.0933 −0.1224 (0.6) 1.0090 (0.1) 1.3573 (0.2) −0.1216 1.0100 1.3604

∗ The SIFs and the exact energy release rate are from the right crack tip

a

L

D

/ 2P b

Film: ,f fE ν

GInterface:

Substrate: ,s sE ν

fh

sh

Fig. 16 Schematic-diagram of film/substrate system by four point
bending test (half model)

The phase angle is computed by taking the characteristic
length l given in Eq. (8) to be the total thickness of film/sub-
strate system ht :

ψ = tan−1
(

Im[Khiε
t ]

Re[Khiε
t ]

)
(88)

In addition, we also choose the factors K0 and G0 are used
to normalize the SIFs and the energy release rate, respec-
tively.

K0 = P L

bh3/2
t

G0 = (1 − v2
s )P

2 L2

Esb2h3
t

(89)

In the numerical model, the depth b is taken to be unity,
h f = 1, ht/h f = 10, L/D = 2.5, D/ht = 5 and a/ht = 3.
Thus, the problem domain is L ×ht = 125×10 and a = 30.
The material parameters are Es = 1 × 103, E f /Es = 10
and v f = vs = 0.3. Based on this, the exact steady state
energy release rate is 1.3632 from Eq. (86). The mesh with
ht/h = 6.0 and the domain radius parameter rk = 4 are
used. Note that the singular FEM uses the six-node triangu-
lar meshes which have the same DOFs as the meshes other

Table 9 Film/substrate system by four point bending test: comparison
of stress intensity factors and energy release rate using the standard
FEM, the singular FEM, ES-FEM and the singular ES-FEM under the
same triangular mesh with ht/h = 6.0+

Method K I /K0 KII/K0 ψ G/G0 (% error)

FEM 0.9386 1.2832 43.81 1.3142 (3.6)

Sin FEM* 0.9564 1.2965 43.54 1.3502 (0.9)

ES-FEM 0.9517 1.2946 43.68 1.3423 (1.5)

Sin ES-FEM 0.9572 1.2970 43.57 1.3511 (0.8)

+ The exact energy release rate from Eq. (86) is 1.3632.
* The singular FEM uses the six-node triangular mesh which has the
same DOFs as the mesh other methods use

methods use. Comparison of energy release rates obtained by
the standard FEM, the singular FEM, ES-FEM and the singu-
lar ES-FEM are presented in Table 9. Results for K I , KII and
ψ are also indicated for completeness. From the results, it is
found again that the singular ES-FEM provide more accu-
racy of energy release rate compared to the standard FEM,
the singular FEM and ES-FEM. Moreover, the energy release
rate obtained by the singular ES-FEM is in good agreement
with the exact value [32] with a fraction of percent error.

Then, the fixed total thickness ht = 10 is used and the
thickness ratio h f /ht is varied from 0.1 to 0.5. Also, we
varied the material properties combinations of film and sub-
strate. Table 10 lists the steady state energy release rate for
different thickness ratio and different material combinations.
Again, we can observe that all the results by the singular
ES-FEM are in excellent agreement with the corresponding
reference solutions, and the relative errors are less than 1%.

7 Conclusion

In this work, a singular edge-based smoothed finite element
method (ES-FEM) is proposed to solve problems with
mix-mode interface cracks between two dissimilar isotropic
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Table 10 Film/substrate system
by four point bending test: effect
of thickness ratio

E f
Es

h f
hs+h f

Singular ES-FEM Exact solution

K I /K0 KII/K0 ψ G/G0 (% error) G
G0

10 0.1 0.9572 1.2970 43.57 1.3511 (0.8) 1.3632

0.2 1.2948 1.6356 41.63 2.2626 (0.7) 2.2793

0.3 1.7766 1.9884 38.22 3.6969 (0.7) 3.7254

0.4 2.4676 2.4454 34.74 6.2754 (0.8) 6.3249

0.5 3.4789 3.1173 31.86 11.3451 (0.9) 11.4523

0.1 0.1 0.0729 0.1000 63.90 0.0801 (0.9) 0.0807

0.2 0.1618 0.1787 57.85 0.3022 (0.7) 0.3043

0.3 0.3024 0.2844 53.25 0.8959 (0.5) 0.9010

0.4 0.5295 0.4372 49.55 2.4518 (0.5) 2.4655

0.5 0.8949 0.6661 46.66 6.4706 (0.8) 6.5228

materials. A five-node singular element is designed within
the framework of ES-FEM to construct the singular shape
functions. To model the oscillatory effect r iε at the crack
tip, the mix-mode stress intensity factors are numerically
extracted by the domain form of the interaction integral with
appropriate modifications. Through the formulation and
numerical examples, some conclusions can be drawn as
follows:

1. In the Gauss integrations for computing the stiffness
matrix, at least 5 gauss points should be used along one
segment of the crack tip smoothing domain for the five-
node singular element to ensure the accuracy of results.

2. Domain independence of the SIFs are observed for the
domain radius parameter rk > 3, regardless of one crack
tip or multiple crack tips considered in the computation.

3. The singular ES-FEM improves the accuracy of stress
intensity factors and energy release rate in comparison
with the standard FEM, the singular FEM and ES-FEM.

4. Excellent agreement between the numerical results and
reference solutions with less than 1% relative error was
realized for a wide range of material combinations and
boundary conditions. This indicates that the singular
ES-FEM can solve the interface crack problems
effectively.
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